Enantioselective Synthesis of S-(+)-Pantolactone Sunil V. Pansare* and Rajendra P. Jain Division of Organic Chemistry (Synthesis) National Chemical Laboratory Pune 411 008 India ## **Supporting Information** 8R,6R,9S,5,5,9,10-Tetramethyl-1,3,7-trioxa-10-aza-spiro[5,5]undecan-11-one: Prins reaction of 2 with (CH₂O)_n/H₂SO₄ in CH₃COOH: Conc. H₂SO₄ (0.25 g, 2.55 mmol) was added to a mixture of the alkylidene morpholinone (1.2 g, 4.9 mmol) and paraformaldehyde (0.735 g, 24.5 mmol) in glacial acetic acid (20 mL) and the reaction mixture was heated at an oil bath tempereture of 75-80°C for 1 h. It was neutralized with saturated aq. NaHCO₃ and extracted with ether. The ether layer was washed with water, 2N HCl followed by water and dried over Na₂SO₄. Removal of the solvent under reduced pressure furnished 1.234 g of the crude product as clear colourless gum. Purification by flash chromatography over silica gel (petroleum ether/ethyl acetate 7/3) furnished 1.086g (72%) of the spiro acetal 3 as a white solid. IR (CHCl₃): 3017, 2982, 1655, 1479, 1215, 1178, 1150, 1132, 1097, 1036, 1013, 976 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 7.5-7.2 (m, 5H, ArH), 5.4 (d, 1H, J = 3.4, PhCH), 5.1 (d, 1H, J = 5.9, OCH₂O), 5.0 (d, 1H, J = 5.9, OCH₂O), 3.85 (s, 2H, OC H_2 C), 3.45 (dq, 1H, J = 3.4, 6..3, CH₃CH), 3.00 (s, 3H, NC H_3), 1.30 (s, 3H, CC H_3), 1.1 (s, 3H, CC H_3), 0.95 (d, 3H, J = 6.3, CHC H_3); ¹³C NMR (75 MHz, CDCl₃): δ 165.0 (C=O), 137.2 (ArC), 128.4 (ArCH), 127.6 (ArCH), 125.4 (ArCH), 99.4 (OCO (quat)), 88.3 (O-CH₂-O), 74.5 (CCH₂O), 70.7 (PhCH), 58.9 (CH₃CH), 38.0 ((CH₃)₂C), 33.5 (NCH₃), 22.0 (CCH3), 21.3 (CCH3), 12.4 (CHCH3); MS (70 eV) m/z 91 (8), 105 (3), 118 (100), 146 (4), 220 (3), 305 (M⁺, 3). HRMS (CI, NH₃): for $C_{17}H_{24}NO_4$ [M + H]⁺ calcd 306.1706, found 306.1707. 2S,5S,6R-4,5-Dimethyl-6-phenyl-2-(1,1-dimethyl-2-methoxy ethyl) morpholin-3-one: Reductive cleavage of spiro acetal 3 with TiCl₄/Et₃SiH: To the solution of 3 (1.08 g, 3.54 mmol) in dichloromethane (30 mL) at -78°C was added Et₃SiH (11.3 mL, 70.8 mmol) followed by TiCl₄ (4.65 mL, 42.48 mmol) and the reaction mixture was slowly warmed to and stirred at ambient temperature for 24 h. It was then cooled to 0 °C, saturated aqueous NH₄Cl was added and the mixture was warmed up to ambient temperature. Water was added to dissolve precipitated solids and the solution was extracted with CH₂Cl₂. The combined CH₂Cl₂ layers were dried (Na₂SO₄) and concentrated to furnish 1.22 g crude product which on purification by flash chromatography on silica gel furnished 990 mg (96%) of 5 as clear colourless gum. IR (neat): 2976, 2932, 2874, 1651, 1477, 1452, 1396, 1379, 1308, 1252, 1150, 1111, 1063 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 7.5-7.2 (m, 5H, Ar*H*), 4.9 (d, 1H, *J* = 2.9, PhC*H*), 4.25 (s, 1H, C*H*O), 3.55 (d, 1H, *J* = 8.8, C*H*₂), 3.45 (d, 1H, *J* = 8.8, C*H*₂), 3.48 (dq, 1H, *J* = 2.9, 6.6, MeC*H*), 3.35 (s, 3H, OC*H*₃), 3.0 (s, 3H, NC*H*₃), 1.15 (s, 6H, C(C*H*₃)₂), 0.95 (d, 3H, *J* = 6.6, CHC*H*₃); ¹³CNMR (22.5 MHz, CDCl₃): δ 168.3 (*C*=O), 138.0 (Ar*C*), 127.9, 127.1, 125.1 (Ar*C*H),81.3 (*C*H-O), 79.4 (*C*H₂O), 76 (Ph*C*H), 58.7, 58.4 (OCH₃), CH₃CH), 39.8 (NCH₃), 33 (C(CH₃)₂), 21.7 (C(CH₃)₂), 12.7 (CH₃CH); MS (70eV) m/z 58 (7), 84 (33), 118 (100), 140 (15), 148 (7), 205 (70), 276 (1), 291 (M⁺, 1); HRMS (CI, NH₃): for $C_{17}H_{26}NO_3$ [M + H]⁺ calcd 292.1913, found 292.1913. ## 2S-3,3-Dimethyl-2-hydroxy-4-methoxybutanoic acid N-methyl amide: **Dissolving metal reduction of 5**: To anhydrous liquid ammonia (25 mL, distilled over sodium) was added Na metal (0.8 g, 34.7 mmol) at -78 °C and the mixture stirred for 15 minutes. To the resulting blue solution was added a solution of **5** (0.98 g, 3.36 mmol) in anhydrous THF (2 mL) and the mixture was stirred for 10-15 sec. Anhydrous ammonium chloride (6 g) was added and the mixture was warmed to ambient temperature to remove ammonia. The resulting solid mass was extracted with hot ethyl acetate to furnish 0.8 g of the crude product. Purification by flash chromatography on silica gel (petroleum ether/ethyl acetate 2/8 furnished 369 mg (62%) of **6**. IR (CHCl₃): 3431, 2964, 2936, 2880, 2251, 1666, 1541, 1477, 1414, 1101, 1074, 908 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.8 (br s, 1H, NH), 4.45 (d, 1H, J = 3.6, OH), 4.00 (d, 1H, J = 3.6, CH), 3.35 (s, 3H, OCH₃), 3.35 (d, 1H, J = 9.2, CH₂), 3.25 (d, 1H, J = 9.2, CH₂), 2.85 (d, J = 5.1, 3H, NCH₃), 1.00 (s, 6H, C(CH₃)₂). ¹³CNMR (22.5 MHz, CDCl₃): d 172.9 (C = O), 81.7 (C = O), 81.7 (C = O), 77.9 (O = O), 59.1 (O = O), 38.4 (O = O), 25.0, 25.3 (O = O), 21.6 (O = O), 20.2 (O = O), 14.MS (CI, NH₃): for C₈H₁₈NO₃ [M + H]⁺ calcd 176.1287, found 176.1288. S-(+)-Pantolactone (7): To the solution of 6 (0.1 g, 0.57 mmol) in CH₂Cl₂ (4 mL) was added at -78°C BBr₃ (2M in CH₂Cl₂, 2.5 mL) and the resulting mixture was slowly warmed to and stirred at -15°C for 2h. Water (2 mL) was added and the reaction mixture was stirred for an additional 10 min after which 2 mL of ice cold 6M H₂SO₄ was added dropwise and the reaction mixture was slowly warmed to and stirred at ambient temperature for 12 h. It was cooled (ice bath) and neutralized by addition of small portions of solid NaHCO₃. The resulting semi-solid residue was extracted with hot CH₂Cl₂ to furnish 72 mg of the crude lactone as clear colorless oil. Purification by flash chromatography on silica gel (petroleum ether/ethyl acetate 6/4 furnished 51 mg (68%) of S-(+)-pantolactone as a white solid. IR (CHCl₃): 3445, 1782, 1113, 1007 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 4.1 (d, 1H, J = 3.7, CHOH), 4.03 (d, 1H, J = 9.2, CH₂), 3.95 (d, 1H, J = 9.2, CH₂), 2.82 (d, 1H, J = 3.7, OH), 1.24 (s, 3H, CH₃), 1.08 (s, 3H, CH₃); MS (70eV) m/z 57 (19), 68 (15), 71 (100), 85 (2), 130 (M⁺, 1); [α]_D²⁵ = +51.6 (c 2, H₂O).